Tap the blue circles to see an explanation.
| $$ \begin{aligned}2(4x^2+4x-6)-(x+8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^2+8x-12-(x+8) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^2+8x-12-x-8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8x^2+7x-20\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( 4x^2+4x-6\right) $ $$ \color{blue}{2} \cdot \left( 4x^2+4x-6\right) = 8x^2+8x-12 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( x+8 \right) = -x-8 $$ |
| ③ | Combine like terms: $$ 8x^2+ \color{blue}{8x} \color{red}{-12} \color{blue}{-x} \color{red}{-8} = 8x^2+ \color{blue}{7x} \color{red}{-20} $$ |