Tap the blue circles to see an explanation.
| $$ \begin{aligned}2\cdot(3-4t)\cdot5t\cdot6t& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(6-8t)\cdot5t\cdot6t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(30-40t)t\cdot6t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(30t-40t^2)\cdot6t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(180t-240t^2)t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}180t^2-240t^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-240t^3+180t^2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( 3-4t\right) $ $$ \color{blue}{2} \cdot \left( 3-4t\right) = 6-8t $$ |
| ② | $$ \left( \color{blue}{6-8t}\right) \cdot 5 = 30-40t $$ |
| ③ | $$ \left( \color{blue}{30-40t}\right) \cdot t = 30t-40t^2 $$ |
| ④ | $$ \left( \color{blue}{30t-40t^2}\right) \cdot 6 = 180t-240t^2 $$ |
| ⑤ | $$ \left( \color{blue}{180t-240t^2}\right) \cdot t = 180t^2-240t^3 $$ |
| ⑥ | Combine like terms: $$ -240t^3+180t^2 = -240t^3+180t^2 $$ |