Tap the blue circles to see an explanation.
| $$ \begin{aligned}1+2(t-\frac{1}{2})-2(t-\frac{1}{2})^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}1+2 \cdot \frac{2t-1}{2}-2(t-\frac{1}{2})^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}1+2t-1-2(t-\frac{1}{2})^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2t-2(t-\frac{1}{2})^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(t-(t-\frac{1}{2})^2)\cdot2\end{aligned} $$ | |
| ① | Subtract $ \dfrac{1}{2} $ from $ t $ to get $ \dfrac{ \color{purple}{ 2t-1 } }{ 2 }$. Step 1: Write $ t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Multiply $2$ by $ \dfrac{2t-1}{2} $ to get $ 2t-1$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Cancel $ \color{blue}{ 2 } $ in first and second fraction. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} 2 \cdot \frac{2t-1}{2} & \xlongequal{\text{Step 1}} \frac{2}{\color{red}{1}} \cdot \frac{2t-1}{2} \xlongequal{\text{Step 2}} \frac{\color{blue}{1}}{1} \cdot \frac{2t-1}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 \cdot \left( 2t-1 \right) }{ 1 \cdot 1 } \xlongequal{\text{Step 4}} \frac{ 2t-1 }{ 1 } =2t-1 \end{aligned} $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{1}} \,+2t \, \color{blue}{ -\cancel{1}} \, = 2t $$ |
| ④ | Use the distributive property. |