Tap the blue circles to see an explanation.
| $$ \begin{aligned}18 \cdot \frac{y^7}{20}y^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{18y^7}{20}y^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18y^{10}}{20}\end{aligned} $$ | |
| ① | Multiply $18$ by $ \dfrac{y^7}{20} $ to get $ \dfrac{ 18y^7 }{ 20 } $. Step 1: Write $ 18 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 18 \cdot \frac{y^7}{20} & \xlongequal{\text{Step 1}} \frac{18}{\color{red}{1}} \cdot \frac{y^7}{20} \xlongequal{\text{Step 2}} \frac{ 18 \cdot y^7 }{ 1 \cdot 20 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18y^7 }{ 20 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{18y^7}{20} $ by $ y^3 $ to get $ \dfrac{ 18y^{10} }{ 20 } $. Step 1: Write $ y^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{18y^7}{20} \cdot y^3 & \xlongequal{\text{Step 1}} \frac{18y^7}{20} \cdot \frac{y^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 18y^7 \cdot y^3 }{ 20 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 18y^{10} }{ 20 } \end{aligned} $$ |