Tap the blue circles to see an explanation.
| $$ \begin{aligned}16 \cdot \frac{x^2}{(x^2+1)^3}-\frac{4}{(x^2+1)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}16 \cdot \frac{x^2}{x^6+3x^4+3x^2+1}-\frac{4}{x^4+2x^2+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{16x^2}{x^6+3x^4+3x^2+1}-\frac{4}{x^4+2x^2+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{12x^2-4}{x^6+3x^4+3x^2+1}\end{aligned} $$ | |
| ① | Find $ \left(x^2+1\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x^2 $ and $ B = 1 $. $$ \left(x^2+1\right)^3 = \left( x^2 \right)^3+3 \cdot \left( x^2 \right)^2 \cdot 1 + 3 \cdot x^2 \cdot 1^2+1^3 = x^6+3x^4+3x^2+1 $$ |
| ② | Find $ \left(x^2+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x^2 } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x^2+1\right)^2 = \color{blue}{\left( x^2 \right)^2} +2 \cdot x^2 \cdot 1 + \color{red}{1^2} = x^4+2x^2+1\end{aligned} $$ |
| ③ | Multiply $16$ by $ \dfrac{x^2}{x^6+3x^4+3x^2+1} $ to get $ \dfrac{ 16x^2 }{ x^6+3x^4+3x^2+1 } $. Step 1: Write $ 16 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 16 \cdot \frac{x^2}{x^6+3x^4+3x^2+1} & \xlongequal{\text{Step 1}} \frac{16}{\color{red}{1}} \cdot \frac{x^2}{x^6+3x^4+3x^2+1} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 16 \cdot x^2 }{ 1 \cdot \left( x^6+3x^4+3x^2+1 \right) } \xlongequal{\text{Step 3}} \frac{ 16x^2 }{ x^6+3x^4+3x^2+1 } \end{aligned} $$ |
| ④ | Find $ \left(x^2+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x^2 } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x^2+1\right)^2 = \color{blue}{\left( x^2 \right)^2} +2 \cdot x^2 \cdot 1 + \color{red}{1^2} = x^4+2x^2+1\end{aligned} $$ |
| ⑤ | Subtract $ \dfrac{4}{x^4+2x^2+1} $ from $ \dfrac{16x^2}{x^6+3x^4+3x^2+1} $ to get $ \dfrac{ \color{purple}{ 12x^2-4 } }{ x^6+3x^4+3x^2+1 }$. To subtract raitonal expressions, both fractions must have the same denominator. |