Tap the blue circles to see an explanation.
| $$ \begin{aligned}11x^2-3x(3x-11)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}11x^2-(9x^2-33x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}11x^2-9x^2+33x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2+33x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3x} $ by $ \left( 3x-11\right) $ $$ \color{blue}{3x} \cdot \left( 3x-11\right) = 9x^2-33x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 9x^2-33x \right) = -9x^2+33x $$ |
| ③ | Combine like terms: $$ \color{blue}{11x^2} \color{blue}{-9x^2} +33x = \color{blue}{2x^2} +33x $$ |