Tap the blue circles to see an explanation.
| $$ \begin{aligned}11x^2-12 \cdot \frac{x}{6}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}11x^2-\frac{12x}{6}x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}11x^2-\frac{12x^2}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{54x^2}{6}\end{aligned} $$ | |
| ① | Multiply $12$ by $ \dfrac{x}{6} $ to get $ \dfrac{ 12x }{ 6 } $. Step 1: Write $ 12 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 12 \cdot \frac{x}{6} & \xlongequal{\text{Step 1}} \frac{12}{\color{red}{1}} \cdot \frac{x}{6} \xlongequal{\text{Step 2}} \frac{ 12 \cdot x }{ 1 \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12x }{ 6 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{12x}{6} $ by $ x $ to get $ \dfrac{ 12x^2 }{ 6 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{12x}{6} \cdot x & \xlongequal{\text{Step 1}} \frac{12x}{6} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 12x \cdot x }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 12x^2 }{ 6 } \end{aligned} $$ |
| ③ | Subtract $ \dfrac{12x^2}{6} $ from $ 11x^2 $ to get $ \dfrac{ \color{purple}{ 54x^2 } }{ 6 }$. Step 1: Write $ 11x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |