Tap the blue circles to see an explanation.
| $$ \begin{aligned}10(x+4)(x^2-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(10x+40)(x^2-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10x^3-50x+40x^2-200 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}10x^3+40x^2-50x-200\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{10} $ by $ \left( x+4\right) $ $$ \color{blue}{10} \cdot \left( x+4\right) = 10x+40 $$ |
| ② | Multiply each term of $ \left( \color{blue}{10x+40}\right) $ by each term in $ \left( x^2-5\right) $. $$ \left( \color{blue}{10x+40}\right) \cdot \left( x^2-5\right) = 10x^3-50x+40x^2-200 $$ |
| ③ | Combine like terms: $$ 10x^3+40x^2-50x-200 = 10x^3+40x^2-50x-200 $$ |