Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{x}+\frac{2}{x-2}-\frac{2}{x+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3x-2}{x^2-2x}-\frac{2}{x+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2+8x-4}{x^3-4x}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{x} $ and $ \dfrac{2}{x-2} $ to get $ \dfrac{ \color{purple}{ 3x-2 } }{ x^2-2x }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $ \dfrac{2}{x+2} $ from $ \dfrac{3x-2}{x^2-2x} $ to get $ \dfrac{ \color{purple}{ x^2+8x-4 } }{ x^3-4x }$. To subtract raitonal expressions, both fractions must have the same denominator. |