Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{x^2}-4x^2+6x+\frac{8}{x^2}+5x+4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-4x^4+1}{x^2}+6x+\frac{8}{x^2}+5x+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4x^4+6x^3+1}{x^2}+\frac{8}{x^2}+5x+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4x^4+6x^3+9}{x^2}+5x+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-4x^4+11x^3+9}{x^2}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-4x^4+11x^3+4x^2+9}{x^2}\end{aligned} $$ | |
| ① | Subtract $4x^2$ from $ \dfrac{1}{x^2} $ to get $ \dfrac{ \color{purple}{ -4x^4+1 } }{ x^2 }$. Step 1: Write $ 4x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{-4x^4+1}{x^2} $ and $ 6x $ to get $ \dfrac{ \color{purple}{ -4x^4+6x^3+1 } }{ x^2 }$. Step 1: Write $ 6x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-4x^4+6x^3+1}{x^2} $ and $ \dfrac{8}{x^2} $ to get $ \dfrac{-4x^4+6x^3+9}{x^2} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-4x^4+6x^3+1}{x^2} + \frac{8}{x^2} & = \frac{-4x^4+6x^3+1}{\color{blue}{x^2}} + \frac{8}{\color{blue}{x^2}} = \\[1ex] &=\frac{ -4x^4+6x^3+1 + 8 }{ \color{blue}{ x^2 }}= \frac{-4x^4+6x^3+9}{x^2} \end{aligned} $$ |
| ④ | Add $ \dfrac{-4x^4+6x^3+9}{x^2} $ and $ 5x $ to get $ \dfrac{ \color{purple}{ -4x^4+11x^3+9 } }{ x^2 }$. Step 1: Write $ 5x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Add $ \dfrac{-4x^4+11x^3+9}{x^2} $ and $ 4 $ to get $ \dfrac{ \color{purple}{ -4x^4+11x^3+4x^2+9 } }{ x^2 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |