Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{8}p-\frac{3}{4}-\frac{5}{12}+\frac{6}{7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{p}{8}-\frac{3}{4}-\frac{5}{12}+\frac{6}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{p-6}{8}-\frac{5}{12}+\frac{6}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3p-28}{24}+\frac{6}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{21p-52}{168}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{8} $ by $ p $ to get $ \dfrac{ p }{ 8 } $. Step 1: Write $ p $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{8} \cdot p & \xlongequal{\text{Step 1}} \frac{1}{8} \cdot \frac{p}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot p }{ 8 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ p }{ 8 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{3}{4} $ from $ \dfrac{p}{8} $ to get $ \dfrac{ \color{purple}{ p-6 } }{ 8 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $ \dfrac{5}{12} $ from $ \dfrac{p-6}{8} $ to get $ \dfrac{ \color{purple}{ 3p-28 } }{ 24 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Add $ \dfrac{3p-28}{24} $ and $ \dfrac{6}{7} $ to get $ \dfrac{ \color{purple}{ 21p-52 } }{ 168 }$. To add raitonal expressions, both fractions must have the same denominator. |