Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{3}\cdot2-(\frac{1}{3})^2-2\frac{1}{3}\cdot2+(\frac{1}{3})^2-4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{3}\cdot2-\frac{1}{9}-2\frac{1}{3}\cdot2+(\frac{1}{3})^2-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5}{9}-2\frac{1}{3}\cdot2+(\frac{1}{3})^2-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{7}{9}+\frac{1}{9}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{6}{9}-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\frac{42}{9}\end{aligned} $$ | |
| ① | $$ (\frac{1}{3})^2 =
\frac{ 1 }{ 3 }^{ 2 } \cdot 1 ^ { 2 } =
\frac{ 1 }{ 3 }^{ 2 } 1 ^2 =
\frac{ 1 }{ 3 }^{ 2 } \lvert 1 \rvert =
\frac{1}{9} $$ |
| ② | Combine like terms |
| ③ | Combine like terms |
| ④ | $$ (\frac{1}{3})^2 =
\frac{ 1 }{ 3 }^{ 2 } \cdot 1 ^ { 2 } =
\frac{ 1 }{ 3 }^{ 2 } 1 ^2 =
\frac{ 1 }{ 3 }^{ 2 } \lvert 1 \rvert =
\frac{1}{9} $$ |
| ⑤ | Add $ \dfrac{-7}{9} $ and $ \dfrac{1}{9} $ to get $ \dfrac{-6}{9} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-7}{9} + \frac{1}{9} & = \frac{-7}{\color{blue}{9}} + \frac{1}{\color{blue}{9}} =\frac{ -7 + 1 }{ \color{blue}{ 9 }} = \\[1ex] &= \frac{-6}{9} \end{aligned} $$ |
| ⑥ | Subtract $4$ from $ \dfrac{-6}{9} $ to get $ \dfrac{ \color{purple}{ -42 } }{ 9 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract fractions they must have the same denominator. |