Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{3}\cdot(1-3b^2)(b-a)+\frac{1}{2}(a-b)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3b^2+1}{3}(b-a)+\frac{a-b}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3ab^2-3b^3-a+b}{3}+\frac{a-b}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{6ab^2-6b^3+a-b}{6}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{3} $ by $ 1-3b^2 $ to get $ \dfrac{-3b^2+1}{3} $. Step 1: Write $ 1-3b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot 1-3b^2 & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{1-3b^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( 1-3b^2 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1-3b^2 }{ 3 } = \frac{-3b^2+1}{3} \end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{2} $ by $ a-b $ to get $ \dfrac{ a-b }{ 2 } $. Step 1: Write $ a-b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot a-b & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{a-b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( a-b \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a-b }{ 2 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{-3b^2+1}{3} $ by $ b-a $ to get $ \dfrac{3ab^2-3b^3-a+b}{3} $. Step 1: Write $ b-a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-3b^2+1}{3} \cdot b-a & \xlongequal{\text{Step 1}} \frac{-3b^2+1}{3} \cdot \frac{b-a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -3b^2+1 \right) \cdot \left( b-a \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -3b^3+3ab^2+b-a }{ 3 } = \frac{3ab^2-3b^3-a+b}{3} \end{aligned} $$ |
| ④ | Multiply $ \dfrac{1}{2} $ by $ a-b $ to get $ \dfrac{ a-b }{ 2 } $. Step 1: Write $ a-b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot a-b & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{a-b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( a-b \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ a-b }{ 2 } \end{aligned} $$ |
| ⑤ | Add $ \dfrac{3ab^2-3b^3-a+b}{3} $ and $ \dfrac{a-b}{2} $ to get $ \dfrac{ \color{purple}{ 6ab^2-6b^3+a-b } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |