Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}n^2-6n-\frac{3}{4}n+7n& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{n^2}{2}-6n-\frac{3n}{4}+7n \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{n^2-12n}{2}-\frac{3n}{4}+7n \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{2n^2-27n}{4}+7n \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2n^2+n}{4}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ n^2 $ to get $ \dfrac{ n^2 }{ 2 } $. Step 1: Write $ n^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot n^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{n^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot n^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ n^2 }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{3}{4} $ by $ n $ to get $ \dfrac{ 3n }{ 4 } $. Step 1: Write $ n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot n & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{n}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot n }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3n }{ 4 } \end{aligned} $$ |
| ③ | Subtract $6n$ from $ \dfrac{n^2}{2} $ to get $ \dfrac{ \color{purple}{ n^2-12n } }{ 2 }$. Step 1: Write $ 6n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $ \dfrac{3}{4} $ by $ n $ to get $ \dfrac{ 3n }{ 4 } $. Step 1: Write $ n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot n & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{n}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot n }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3n }{ 4 } \end{aligned} $$ |
| ⑤ | Subtract $ \dfrac{3n}{4} $ from $ \dfrac{n^2-12n}{2} $ to get $ \dfrac{ \color{purple}{ 2n^2-27n } }{ 4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $ \dfrac{2n^2-27n}{4} $ and $ 7n $ to get $ \dfrac{ \color{purple}{ 2n^2+n } }{ 4 }$. Step 1: Write $ 7n $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |