Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}b-8-\frac{2}{7}b+4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{b}{2}-8-\frac{2b}{7}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{b-16}{2}-\frac{2b}{7}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{3b-112}{14}+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{3b-56}{14}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ b $ to get $ \dfrac{ b }{ 2 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot b }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ b }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{2}{7} $ by $ b $ to get $ \dfrac{ 2b }{ 7 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{7} \cdot b & \xlongequal{\text{Step 1}} \frac{2}{7} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot b }{ 7 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2b }{ 7 } \end{aligned} $$ |
| ③ | Subtract $8$ from $ \dfrac{b}{2} $ to get $ \dfrac{ \color{purple}{ b-16 } }{ 2 }$. Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $ \dfrac{2}{7} $ by $ b $ to get $ \dfrac{ 2b }{ 7 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{7} \cdot b & \xlongequal{\text{Step 1}} \frac{2}{7} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot b }{ 7 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2b }{ 7 } \end{aligned} $$ |
| ⑤ | Subtract $ \dfrac{2b}{7} $ from $ \dfrac{b-16}{2} $ to get $ \dfrac{ \color{purple}{ 3b-112 } }{ 14 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Add $ \dfrac{3b-112}{14} $ and $ 4 $ to get $ \dfrac{ \color{purple}{ 3b-56 } }{ 14 }$. Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |