Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}ab(\frac{2}{3}a^2+\frac{3}{4}ab+\frac{4}{5}b^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{a}{2}b(\frac{2a^2}{3}+\frac{3a}{4}b+\frac{4b^2}{5}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{ab}{2}(\frac{2a^2}{3}+\frac{3ab}{4}+\frac{4b^2}{5}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{ab}{2}(\frac{8a^2+9ab}{12}+\frac{4b^2}{5}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{ab}{2}\frac{40a^2+45ab+48b^2}{60} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{40a^3b+45a^2b^2+48ab^3}{120}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{2} $ by $ a $ to get $ \dfrac{ a }{ 2 } $. Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot a & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot a }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ a }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{2}{3} $ by $ a^2 $ to get $ \dfrac{ 2a^2 }{ 3 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^2 }{ 3 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{3}{4} $ by $ a $ to get $ \dfrac{ 3a }{ 4 } $. Step 1: Write $ a $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3}{4} \cdot a & \xlongequal{\text{Step 1}} \frac{3}{4} \cdot \frac{a}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3 \cdot a }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 3a }{ 4 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{4}{5} $ by $ b^2 $ to get $ \dfrac{ 4b^2 }{ 5 } $. Step 1: Write $ b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{5} \cdot b^2 & \xlongequal{\text{Step 1}} \frac{4}{5} \cdot \frac{b^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot b^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4b^2 }{ 5 } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{a}{2} $ by $ b $ to get $ \dfrac{ ab }{ 2 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{a}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot b }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ ab }{ 2 } \end{aligned} $$ |
| ⑥ | Multiply $ \dfrac{2}{3} $ by $ a^2 $ to get $ \dfrac{ 2a^2 }{ 3 } $. Step 1: Write $ a^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot a^2 & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{a^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot a^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2a^2 }{ 3 } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{3a}{4} $ by $ b $ to get $ \dfrac{ 3ab }{ 4 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{3a}{4} \cdot b & \xlongequal{\text{Step 1}} \frac{3a}{4} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 3a \cdot b }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3ab }{ 4 } \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{4}{5} $ by $ b^2 $ to get $ \dfrac{ 4b^2 }{ 5 } $. Step 1: Write $ b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{5} \cdot b^2 & \xlongequal{\text{Step 1}} \frac{4}{5} \cdot \frac{b^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot b^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4b^2 }{ 5 } \end{aligned} $$ |
| ⑨ | Multiply $ \dfrac{a}{2} $ by $ b $ to get $ \dfrac{ ab }{ 2 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{a}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot b }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ ab }{ 2 } \end{aligned} $$ |
| ⑩ | Add $ \dfrac{2a^2}{3} $ and $ \dfrac{3ab}{4} $ to get $ \dfrac{ \color{purple}{ 8a^2+9ab } }{ 12 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑪ | Multiply $ \dfrac{4}{5} $ by $ b^2 $ to get $ \dfrac{ 4b^2 }{ 5 } $. Step 1: Write $ b^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4}{5} \cdot b^2 & \xlongequal{\text{Step 1}} \frac{4}{5} \cdot \frac{b^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4 \cdot b^2 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4b^2 }{ 5 } \end{aligned} $$ |
| ⑫ | Multiply $ \dfrac{a}{2} $ by $ b $ to get $ \dfrac{ ab }{ 2 } $. Step 1: Write $ b $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{a}{2} \cdot b & \xlongequal{\text{Step 1}} \frac{a}{2} \cdot \frac{b}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ a \cdot b }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ ab }{ 2 } \end{aligned} $$ |
| ⑬ | Add $ \dfrac{8a^2+9ab}{12} $ and $ \dfrac{4b^2}{5} $ to get $ \dfrac{ \color{purple}{ 40a^2+45ab+48b^2 } }{ 60 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑭ | Multiply $ \dfrac{ab}{2} $ by $ \dfrac{40a^2+45ab+48b^2}{60} $ to get $ \dfrac{ 40a^3b+45a^2b^2+48ab^3 }{ 120 } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{ab}{2} \cdot \frac{40a^2+45ab+48b^2}{60} & \xlongequal{\text{Step 1}} \frac{ ab \cdot \left( 40a^2+45ab+48b^2 \right) }{ 2 \cdot 60 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 40a^3b+45a^2b^2+48ab^3 }{ 120 } \end{aligned} $$ |