Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}(x+4)^2+6& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{2}(x^2+8x+16)+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2+8x+16}{2}+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x^2+8x+28}{2}\end{aligned} $$ | |
| ① | Find $ \left(x+4\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 4 }$. $$ \begin{aligned}\left(x+4\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 4 + \color{red}{4^2} = x^2+8x+16\end{aligned} $$ |
| ② | Multiply $ \dfrac{1}{2} $ by $ x^2+8x+16 $ to get $ \dfrac{ x^2+8x+16 }{ 2 } $. Step 1: Write $ x^2+8x+16 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2+8x+16 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2+8x+16}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x^2+8x+16 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2+8x+16 }{ 2 } \end{aligned} $$ |
| ③ | Add $ \dfrac{x^2+8x+16}{2} $ and $ 6 $ to get $ \dfrac{ \color{purple}{ x^2+8x+28 } }{ 2 }$. Step 1: Write $ 6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |