Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{2}(x-2.5)(x-4)-\frac{8}{15}(x-2)(x-4)+\frac{1}{12}(x-2)(x-2.5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(\frac{1}{2}(x-2.5)-\frac{8}{15}(x-2))(x-4)+\frac{x-2}{12}(x-2.5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(\frac{x-2}{2}-\frac{8x-16}{15})(x-4)+\frac{x^2-4x+4}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-x+2}{30}(x-4)+\frac{x^2-4x+4}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{-x^2+6x-8}{30}+\frac{x^2-4x+4}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{3x^2-8x+4}{60}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Multiply $ \dfrac{1}{12} $ by $ x-2 $ to get $ \dfrac{ x-2 }{ 12 } $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{12} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{1}{12} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x-2 \right) }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x-2 }{ 12 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{1}{2} $ by $ x-2 $ to get $ \dfrac{ x-2 }{ 2 } $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x-2 \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x-2 }{ 2 } \end{aligned} $$ |
| ④ | Multiply $ \dfrac{8}{15} $ by $ x-2 $ to get $ \dfrac{ 8x-16 }{ 15 } $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8}{15} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{8}{15} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 8 \cdot \left( x-2 \right) }{ 15 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x-16 }{ 15 } \end{aligned} $$ |
| ⑤ | Multiply $ \dfrac{x-2}{12} $ by $ x-2 $ to get $ \dfrac{x^2-4x+4}{12} $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{12} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{x-2}{12} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( x-2 \right) }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2-2x-2x+4 }{ 12 } = \frac{x^2-4x+4}{12} \end{aligned} $$ |
| ⑥ | Subtract $ \dfrac{8x-16}{15} $ from $ \dfrac{x-2}{2} $ to get $ \dfrac{ \color{purple}{ -x+2 } }{ 30 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑦ | Multiply $ \dfrac{x-2}{12} $ by $ x-2 $ to get $ \dfrac{x^2-4x+4}{12} $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{12} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{x-2}{12} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( x-2 \right) }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2-2x-2x+4 }{ 12 } = \frac{x^2-4x+4}{12} \end{aligned} $$ |
| ⑧ | Multiply $ \dfrac{-x+2}{30} $ by $ x-4 $ to get $ \dfrac{-x^2+6x-8}{30} $. Step 1: Write $ x-4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-x+2}{30} \cdot x-4 & \xlongequal{\text{Step 1}} \frac{-x+2}{30} \cdot \frac{x-4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -x+2 \right) \cdot \left( x-4 \right) }{ 30 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -x^2+4x+2x-8 }{ 30 } = \frac{-x^2+6x-8}{30} \end{aligned} $$ |
| ⑨ | Multiply $ \dfrac{x-2}{12} $ by $ x-2 $ to get $ \dfrac{x^2-4x+4}{12} $. Step 1: Write $ x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x-2}{12} \cdot x-2 & \xlongequal{\text{Step 1}} \frac{x-2}{12} \cdot \frac{x-2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( x-2 \right) \cdot \left( x-2 \right) }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2-2x-2x+4 }{ 12 } = \frac{x^2-4x+4}{12} \end{aligned} $$ |
| ⑩ | Add $ \dfrac{-x^2+6x-8}{30} $ and $ \dfrac{x^2-4x+4}{12} $ to get $ \dfrac{ \color{purple}{ 3x^2-8x+4 } }{ 60 }$. To add raitonal expressions, both fractions must have the same denominator. |