Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{1-x}-\frac{3}{1-x^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-x^2-x+2}{x^3-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x-2}{x^2+x+1}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{3}{1-x^3} $ from $ \dfrac{1}{1-x} $ to get $ \dfrac{ \color{purple}{ -x^2-x+2 } }{ x^3-1 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Simplify $ \dfrac{-x^2-x+2}{x^3-1} $ to $ \dfrac{-x-2}{x^2+x+1} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x-1}$. $$ \begin{aligned} \frac{-x^2-x+2}{x^3-1} & =\frac{ \left( -x-2 \right) \cdot \color{blue}{ \left( x-1 \right) }}{ \left( x^2+x+1 \right) \cdot \color{blue}{ \left( x-1 \right) }} = \\[1ex] &= \frac{-x-2}{x^2+x+1} \end{aligned} $$ |