Tap the blue circles to see an explanation.
| $$ \begin{aligned}1(8x-5x^3-4)+1(6x^3-5x+3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x-5x^3-4+6x^3-5x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+3x-1\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{1} $ by $ \left( 8x-5x^3-4\right) $ $$ \color{blue}{1} \cdot \left( 8x-5x^3-4\right) = 8x-5x^3-4 $$Multiply $ \color{blue}{1} $ by $ \left( 6x^3-5x+3\right) $ $$ \color{blue}{1} \cdot \left( 6x^3-5x+3\right) = 6x^3-5x+3 $$ |
| ② | Combine like terms: $$ \color{blue}{8x} \color{red}{-5x^3} \color{green}{-4} + \color{red}{6x^3} \color{blue}{-5x} + \color{green}{3} = \color{red}{x^3} + \color{blue}{3x} \color{green}{-1} $$ |