Tap the blue circles to see an explanation.
| $$ \begin{aligned}0.5(x+2)^3(x-1)^2(-3x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}0.5(x^3+6x^2+12x+8)(x^2-2x+1)(-3x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0x^3+0x^2+0x+0)(x^2-2x+1)(-3x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}0(-3x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}0x+0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}0\end{aligned} $$ | |
| ① | Find $ \left(x+2\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = 2 $. $$ \left(x+2\right)^3 = x^3+3 \cdot x^2 \cdot 2 + 3 \cdot x \cdot 2^2+2^3 = x^3+6x^2+12x+8 $$Find $ \left(x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x-1\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 1 + \color{red}{1^2} = x^2-2x+1\end{aligned} $$ |
| ② | Multiply $ \color{blue}{0} $ by $ \left( x^3+6x^2+12x+8\right) $ $$ \color{blue}{0} \cdot \left( x^3+6x^2+12x+8\right) = 0x^30x^20x0 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{0x^30x^20x0}\right) $ by each term in $ \left( x^2-2x+1\right) $. $$ \left( \color{blue}{0x^30x^20x0}\right) \cdot \left( x^2-2x+1\right) = \\ = 0x^5 \cancel{0x^4} \cancel{0x^3} \cancel{0x^4} \cancel{0x^3} \cancel{0x^2} \cancel{0x^3} \cancel{0x^2} \cancel{0x} \cancel{0x^2} \cancel{0x}0 $$ |
| ④ | Combine like terms: $$ 0x^5 \, \color{blue}{ \cancel{0x^4}} \, \, \color{green}{ \cancel{0x^3}} \, \, \color{blue}{ \cancel{0x^4}} \, \, \color{blue}{ \cancel{0x^3}} \, \, \color{green}{ \cancel{0x^2}} \, \, \color{blue}{ \cancel{0x^3}} \, \, \color{blue}{ \cancel{0x^2}} \, \, \color{green}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x^2}} \, \, \color{green}{ \cancel{0x}} \,0 = 0 $$ |
| ⑤ | Multiply $ \color{blue}{0} $ by $ \left( -3x+5\right) $ $$ \color{blue}{0} \cdot \left( -3x+5\right) = 0x0 $$ |
| ⑥ | Combine like terms: $$ 0 = 0 $$ |