Tap the blue circles to see an explanation.
| $$ \begin{aligned}0.4\cdot(1500-x)(x-200)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0+0x)(x-200) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}0x+0+0x^2+0x \xlongequal{ } \\[1 em] & \xlongequal{ } \cancel{0x}00x^2 \cancel{0x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{0} $ by $ \left( 1500-x\right) $ $$ \color{blue}{0} \cdot \left( 1500-x\right) = 00x $$ |
| ② | Multiply each term of $ \left( \color{blue}{00x}\right) $ by each term in $ \left( x-200\right) $. $$ \left( \color{blue}{00x}\right) \cdot \left( x-200\right) = \cancel{0x}00x^2 \cancel{0x} $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ \cancel{0x}} \,00x^2 \, \color{blue}{ \cancel{0x}} \, = 0 $$ |