Tap the blue circles to see an explanation.
| $$ \begin{aligned}0.0002378(x+12)(x+3)(x+1)(x-14)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}0.0002378(x+12)(x+3)(x+1)(x^2-28x+196) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0x+0)(x+3)(x+1)(x^2-28x+196) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(0x^2+0x+0x+0)(x+1)(x^2-28x+196) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}0(x+1)(x^2-28x+196) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(0x+0)(x^2-28x+196) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}0x^3+0x^2+0x+0x^2+0x+0 \xlongequal{ } \\[1 em] & \xlongequal{ }0x^3 \cancel{0x^2} \cancel{0x} \cancel{0x^2} \cancel{0x}0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}0\end{aligned} $$ | |
| ① | Find $ \left(x-14\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 14 }$. $$ \begin{aligned}\left(x-14\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 14 + \color{red}{14^2} = x^2-28x+196\end{aligned} $$ |
| ② | Multiply $ \color{blue}{0} $ by $ \left( x+12\right) $ $$ \color{blue}{0} \cdot \left( x+12\right) = 0x0 $$ |
| ③ | Multiply each term of $ \left( \color{blue}{0x0}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{0x0}\right) \cdot \left( x+3\right) = 0x^2 \cancel{0x} \cancel{0x}0 $$ |
| ④ | Combine like terms: $$ 0x^2 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,0 = 0 $$ |
| ⑤ | Multiply $ \color{blue}{0} $ by $ \left( x+1\right) $ $$ \color{blue}{0} \cdot \left( x+1\right) = 0x0 $$ |
| ⑥ | Multiply each term of $ \left( \color{blue}{0x0}\right) $ by each term in $ \left( x^2-28x+196\right) $. $$ \left( \color{blue}{0x0}\right) \cdot \left( x^2-28x+196\right) = \\ = 0x^3 \cancel{0x^2} \cancel{0x} \cancel{0x^2} \cancel{0x}0 $$ |
| ⑦ | Combine like terms: $$ 0x^3 \, \color{blue}{ \cancel{0x^2}} \, \, \color{green}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x^2}} \, \, \color{green}{ \cancel{0x}} \,0 = 0 $$ |