Tap the blue circles to see an explanation.
| $$ \begin{aligned}2.924751E-5(x+19)(x+7)(x-2)(x-2)(x-10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(0x+0)(x+7)(x-2)(x-2)(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(0x^2+0x+0x+0)(x-2)(x-2)(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}0(x-2)(x-2)(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(0x+0)(x-2)(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(0x^2+0x+0x+0)(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}0(x-10) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}0x+0 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}0\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{0} $ by $ \left( x+19\right) $ $$ \color{blue}{0} \cdot \left( x+19\right) = 0x0 $$ |
| ② | Multiply each term of $ \left( \color{blue}{0x0}\right) $ by each term in $ \left( x+7\right) $. $$ \left( \color{blue}{0x0}\right) \cdot \left( x+7\right) = 0x^2 \cancel{0x} \cancel{0x}0 $$ |
| ③ | Combine like terms: $$ 0x^2 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,0 = 0 $$ |
| ④ | Multiply $ \color{blue}{0} $ by $ \left( x-2\right) $ $$ \color{blue}{0} \cdot \left( x-2\right) = 0x0 $$ |
| ⑤ | Multiply each term of $ \left( \color{blue}{0x0}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{0x0}\right) \cdot \left( x-2\right) = 0x^2 \cancel{0x} \cancel{0x}0 $$ |
| ⑥ | Combine like terms: $$ 0x^2 \, \color{blue}{ \cancel{0x}} \, \, \color{blue}{ \cancel{0x}} \,0 = 0 $$ |
| ⑦ | Multiply $ \color{blue}{0} $ by $ \left( x-10\right) $ $$ \color{blue}{0} \cdot \left( x-10\right) = 0x0 $$ |
| ⑧ | Combine like terms: $$ 0 = 0 $$ |