Tap the blue circles to see an explanation.
| $$ \begin{aligned}-x^3+\frac{2}{3}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-x^3+\frac{2x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-3x^3+2x}{3}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{2}{3} $ by $ x $ to get $ \dfrac{ 2x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{2}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 2 \cdot x }{ 3 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ 2x }{ 3 } \end{aligned} $$ |
| ② | Add $-x^3$ and $ \dfrac{2x}{3} $ to get $ \dfrac{ \color{purple}{ -3x^3+2x } }{ 3 }$. Step 1: Write $ -x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |