Tap the blue circles to see an explanation.
| $$ \begin{aligned}-9(4k+4)-2k& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(36k+36)-2k \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-36k-36-2k \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-38k-36\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{9} $ by $ \left( 4k+4\right) $ $$ \color{blue}{9} \cdot \left( 4k+4\right) = 36k+36 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(36k+36 \right) = -36k-36 $$ |
| ③ | Combine like terms: $$ \color{blue}{-36k} -36 \color{blue}{-2k} = \color{blue}{-38k} -36 $$ |