Tap the blue circles to see an explanation.
| $$ \begin{aligned}-8 \cdot \frac{x^3}{6}-(10x-4x^2)+\frac{25}{3}x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{8x^3}{6}-(10x-4x^2)+\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-8x^3+24x^2-60x}{6}+\frac{25x}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-8x^3+24x^2-10x}{6}\end{aligned} $$ | |
| ① | Multiply $8$ by $ \dfrac{x^3}{6} $ to get $ \dfrac{ 8x^3 }{ 6 } $. Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8 \cdot \frac{x^3}{6} & \xlongequal{\text{Step 1}} \frac{8}{\color{red}{1}} \cdot \frac{x^3}{6} \xlongequal{\text{Step 2}} \frac{ 8 \cdot x^3 }{ 1 \cdot 6 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 8x^3 }{ 6 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{25}{3} $ by $ x $ to get $ \dfrac{ 25x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
| ③ | Subtract $10x-4x^2$ from $ \dfrac{-8x^3}{6} $ to get $ \dfrac{ \color{purple}{ -8x^3+24x^2-60x } }{ 6 }$. Step 1: Write $ 10x-4x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $ \dfrac{25}{3} $ by $ x $ to get $ \dfrac{ 25x }{ 3 } $. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{25}{3} \cdot x & \xlongequal{\text{Step 1}} \frac{25}{3} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 25 \cdot x }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 25x }{ 3 } \end{aligned} $$ |
| ⑤ | Add $ \dfrac{-8x^3+24x^2-60x}{6} $ and $ \dfrac{25x}{3} $ to get $ \dfrac{ \color{purple}{ -8x^3+24x^2-10x } }{ 6 }$. To add raitonal expressions, both fractions must have the same denominator. |