Tap the blue circles to see an explanation.
| $$ \begin{aligned}-8t(11t^{10}+4)-8(t^{11}+4t)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(88t^{11}+32t)-(8t^{11}+32t) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-88t^{11}-32t-(8t^{11}+32t) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-88t^{11}-32t-8t^{11}-32t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-96t^{11}-64t\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{8t} $ by $ \left( 11t^{10}+4\right) $ $$ \color{blue}{8t} \cdot \left( 11t^{10}+4\right) = 88t^{11}+32t $$Multiply $ \color{blue}{8} $ by $ \left( t^{11}+4t\right) $ $$ \color{blue}{8} \cdot \left( t^{11}+4t\right) = 8t^{11}+32t $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(88t^{11}+32t \right) = -88t^{11}-32t $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8t^{11}+32t \right) = -8t^{11}-32t $$ |
| ④ | Combine like terms: $$ \color{blue}{-88t^{11}} \color{red}{-32t} \color{blue}{-8t^{11}} \color{red}{-32t} = \color{blue}{-96t^{11}} \color{red}{-64t} $$ |