Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{7}{8}t^2-2-6t& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{7t^2}{8}-2-6t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-7t^2-16}{8}-6t \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-7t^2-48t-16}{8}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{7}{8} $ by $ t^2 $ to get $ \dfrac{ 7t^2 }{ 8 } $. Step 1: Write $ t^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{7}{8} \cdot t^2 & \xlongequal{\text{Step 1}} \frac{7}{8} \cdot \frac{t^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 7 \cdot t^2 }{ 8 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7t^2 }{ 8 } \end{aligned} $$ |
| ② | Subtract $2$ from $ \dfrac{-7t^2}{8} $ to get $ \dfrac{ \color{purple}{ -7t^2-16 } }{ 8 }$. Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $6t$ from $ \dfrac{-7t^2-16}{8} $ to get $ \dfrac{ \color{purple}{ -7t^2-48t-16 } }{ 8 }$. Step 1: Write $ 6t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |