Tap the blue circles to see an explanation.
| $$ \begin{aligned}-6-\frac{x^5}{2}-x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-x^5-12}{2}-x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x^5-2x^2-12}{2}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{x^5}{2} $ from $ -6 $ to get $ \dfrac{ \color{purple}{ -x^5-12 } }{ 2 }$. Step 1: Write $ -6 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $x^2$ from $ \dfrac{-x^5-12}{2} $ to get $ \dfrac{ \color{purple}{ -x^5-2x^2-12 } }{ 2 }$. Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |