Tap the blue circles to see an explanation.
| $$ \begin{aligned}-5x(9x+7)+3x^2-6x+2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(45x^2+35x)+3x^2-6x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-45x^2-35x+3x^2-6x+2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-42x^2-41x+2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5x} $ by $ \left( 9x+7\right) $ $$ \color{blue}{5x} \cdot \left( 9x+7\right) = 45x^2+35x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(45x^2+35x \right) = -45x^2-35x $$ |
| ③ | Combine like terms: $$ \color{blue}{-45x^2} \color{red}{-35x} + \color{blue}{3x^2} \color{red}{-6x} +2 = \color{blue}{-42x^2} \color{red}{-41x} +2 $$ |