Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{5}{4}\cdot2x+\frac{5}{6}\cdot4x^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{10x}{4}+\frac{20x^2}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{40x^2-30x}{12}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{5}{4} $ by $ 2x $ to get $ \dfrac{ 10x }{ 4 } $. Step 1: Write $ 2x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{4} \cdot 2x & \xlongequal{\text{Step 1}} \frac{5}{4} \cdot \frac{2x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot 2x }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10x }{ 4 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{5}{6} $ by $ 4x^2 $ to get $ \dfrac{ 20x^2 }{ 6 } $. Step 1: Write $ 4x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5}{6} \cdot 4x^2 & \xlongequal{\text{Step 1}} \frac{5}{6} \cdot \frac{4x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 5 \cdot 4x^2 }{ 6 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 20x^2 }{ 6 } \end{aligned} $$ |
| ③ | Add $ \dfrac{-10x}{4} $ and $ \dfrac{20x^2}{6} $ to get $ \dfrac{ \color{purple}{ 40x^2-30x } }{ 12 }$. To add raitonal expressions, both fractions must have the same denominator. |