Tap the blue circles to see an explanation.
| $$ \begin{aligned}-5(x-1)^2+4& \xlongequal{ }-5(x^2-2x+1)+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(5x^2-10x+5)+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-5x^2+10x-5+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-5x^2+10x-1\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( x^2-2x+1\right) $ $$ \color{blue}{5} \cdot \left( x^2-2x+1\right) = 5x^2-10x+5 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(5x^2-10x+5 \right) = -5x^2+10x-5 $$ |
| ③ | Combine like terms: $$ -5x^2+10x \color{blue}{-5} + \color{blue}{4} = -5x^2+10x \color{blue}{-1} $$ |