Tap the blue circles to see an explanation.
| $$ \begin{aligned}-5(b^6+10)-8\cdot(14+b^6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(5b^6+50)-(112+8b^6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-5b^6-50-(112+8b^6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-5b^6-50-112-8b^6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-13b^6-162\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{5} $ by $ \left( b^6+10\right) $ $$ \color{blue}{5} \cdot \left( b^6+10\right) = 5b^6+50 $$Multiply $ \color{blue}{8} $ by $ \left( 14+b^6\right) $ $$ \color{blue}{8} \cdot \left( 14+b^6\right) = 112+8b^6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(5b^6+50 \right) = -5b^6-50 $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 112+8b^6 \right) = -112-8b^6 $$ |
| ④ | Combine like terms: $$ \color{blue}{-5b^6} \color{red}{-50} \color{red}{-112} \color{blue}{-8b^6} = \color{blue}{-13b^6} \color{red}{-162} $$ |