Tap the blue circles to see an explanation.
| $$ \begin{aligned}-4u^3z^7+12u^7z^7-10u\frac{z^4}{2}u^2z^5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4u^3z^7+12u^7z^7-\frac{10uz^4}{2}u^2z^5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4u^3z^7+12u^7z^7-\frac{10u^3z^4}{2}z^5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-4u^3z^7+12u^7z^7-\frac{10u^3z^9}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{24u^7z^7-10u^3z^9-8u^3z^7}{2}\end{aligned} $$ | |
| ① | Multiply $10u$ by $ \dfrac{z^4}{2} $ to get $ \dfrac{ 10uz^4 }{ 2 } $. Step 1: Write $ 10u $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 10u \cdot \frac{z^4}{2} & \xlongequal{\text{Step 1}} \frac{10u}{\color{red}{1}} \cdot \frac{z^4}{2} \xlongequal{\text{Step 2}} \frac{ 10u \cdot z^4 }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10uz^4 }{ 2 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{10uz^4}{2} $ by $ u^2 $ to get $ \dfrac{ 10u^3z^4 }{ 2 } $. Step 1: Write $ u^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{10uz^4}{2} \cdot u^2 & \xlongequal{\text{Step 1}} \frac{10uz^4}{2} \cdot \frac{u^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 10uz^4 \cdot u^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10u^3z^4 }{ 2 } \end{aligned} $$ |
| ③ | Multiply $ \dfrac{10u^3z^4}{2} $ by $ z^5 $ to get $ \dfrac{ 10u^3z^9 }{ 2 } $. Step 1: Write $ z^5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{10u^3z^4}{2} \cdot z^5 & \xlongequal{\text{Step 1}} \frac{10u^3z^4}{2} \cdot \frac{z^5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 10u^3z^4 \cdot z^5 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10u^3z^9 }{ 2 } \end{aligned} $$ |
| ④ | Subtract $ \dfrac{10u^3z^9}{2} $ from $ -4u^3z^7+12u^7z^7 $ to get $ \dfrac{ \color{purple}{ 24u^7z^7-10u^3z^9-8u^3z^7 } }{ 2 }$. Step 1: Write $ -4u^3z^7+12u^7z^7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |