Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3x^2z(6x-4y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(18x^3z-12x^2yz) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-18x^3z+12x^2yz\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3x^2z} $ by $ \left( 6x-4y\right) $ $$ \color{blue}{3x^2z} \cdot \left( 6x-4y\right) = 18x^3z-12x^2yz $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(18x^3z-12x^2yz \right) = -18x^3z+12x^2yz $$ |