Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3x(5x+1)\cdot(8-2x)& \xlongequal{ }-(15x^2+3x)\cdot(8-2x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(120x^2-30x^3+24x-6x^2) \xlongequal{ } \\[1 em] & \xlongequal{ }-(-30x^3+114x^2+24x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}30x^3-114x^2-24x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{15x^2+3x}\right) $ by each term in $ \left( 8-2x\right) $. $$ \left( \color{blue}{15x^2+3x}\right) \cdot \left( 8-2x\right) = 120x^2-30x^3+24x-6x^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-30x^3+114x^2+24x \right) = 30x^3-114x^2-24x $$ |