Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3c(c^2+2c)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3c^3+6c^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3c^3-6c^2\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3c} $ by $ \left( c^2+2c\right) $ $$ \color{blue}{3c} \cdot \left( c^2+2c\right) = 3c^3+6c^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3c^3+6c^2 \right) = -3c^3-6c^2 $$ |