Tap the blue circles to see an explanation.
| $$ \begin{aligned}-36x \cdot \frac{y^2}{4}y^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{36xy^2}{4}y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36xy^4}{4}\end{aligned} $$ | |
| ① | Multiply $36x$ by $ \dfrac{y^2}{4} $ to get $ \dfrac{ 36xy^2 }{ 4 } $. Step 1: Write $ 36x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 36x \cdot \frac{y^2}{4} & \xlongequal{\text{Step 1}} \frac{36x}{\color{red}{1}} \cdot \frac{y^2}{4} \xlongequal{\text{Step 2}} \frac{ 36x \cdot y^2 }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 36xy^2 }{ 4 } \end{aligned} $$ |
| ② | Multiply $ \dfrac{36xy^2}{4} $ by $ y^2 $ to get $ \dfrac{ 36xy^4 }{ 4 } $. Step 1: Write $ y^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{36xy^2}{4} \cdot y^2 & \xlongequal{\text{Step 1}} \frac{36xy^2}{4} \cdot \frac{y^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 36xy^2 \cdot y^2 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 36xy^4 }{ 4 } \end{aligned} $$ |