Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3(x^3-3x^2+2)-x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(3x^3-9x^2+6)-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3x^3+9x^2-6-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-3x^3+9x^2-x-6\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( x^3-3x^2+2\right) $ $$ \color{blue}{3} \cdot \left( x^3-3x^2+2\right) = 3x^3-9x^2+6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(3x^3-9x^2+6 \right) = -3x^3+9x^2-6 $$ |
| ③ | Combine like terms: $$ -3x^3+9x^2-x-6 = -3x^3+9x^2-x-6 $$ |