Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3(7x-5)(4x-7)& \xlongequal{ }-(21x-15)(4x-7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(84x^2-147x-60x+105) \xlongequal{ } \\[1 em] & \xlongequal{ }-(84x^2-207x+105) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-84x^2+207x-105\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{21x-15}\right) $ by each term in $ \left( 4x-7\right) $. $$ \left( \color{blue}{21x-15}\right) \cdot \left( 4x-7\right) = 84x^2-147x-60x+105 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(84x^2-207x+105 \right) = -84x^2+207x-105 $$ |