Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3(2x^2-2)-5& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(6x^2-6)-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6x^2+6-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-6x^2+1\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3} $ by $ \left( 2x^2-2\right) $ $$ \color{blue}{3} \cdot \left( 2x^2-2\right) = 6x^2-6 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(6x^2-6 \right) = -6x^2+6 $$ |
| ③ | Combine like terms: $$ -6x^2+ \color{blue}{6} \color{blue}{-5} = -6x^2+ \color{blue}{1} $$ |