Tap the blue circles to see an explanation.
| $$ \begin{aligned}-2x(-3b\cdot2+b+5)& \xlongequal{ }-2x(-6b+b+5) \xlongequal{ } \\[1 em] & \xlongequal{ }-2x(-5b+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-10bx+10x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10bx-10x\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2x} $ by $ \left( -5b+5\right) $ $$ \color{blue}{2x} \cdot \left( -5b+5\right) = -10bx+10x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-10bx+10x \right) = 10bx-10x $$ |