Tap the blue circles to see an explanation.
| $$ \begin{aligned}-2(x+7)^2+35& \xlongequal{ }-2(x^2+14x+49)+35 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x^2+28x+98)+35 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x^2-28x-98+35 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2x^2-28x-63\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x^2+14x+49\right) $ $$ \color{blue}{2} \cdot \left( x^2+14x+49\right) = 2x^2+28x+98 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x^2+28x+98 \right) = -2x^2-28x-98 $$ |
| ③ | Combine like terms: $$ -2x^2-28x \color{blue}{-98} + \color{blue}{35} = -2x^2-28x \color{blue}{-63} $$ |