Tap the blue circles to see an explanation.
| $$ \begin{aligned}-2(x-2)+2x+1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(2x-4)+2x+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2x+4+2x+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{2} $ by $ \left( x-2\right) $ $$ \color{blue}{2} \cdot \left( x-2\right) = 2x-4 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(2x-4 \right) = -2x+4 $$ |
| ③ | Combine like terms: $$ \, \color{blue}{ -\cancel{2x}} \,+ \color{green}{4} + \, \color{blue}{ \cancel{2x}} \,+ \color{green}{1} = \color{green}{5} $$ |