Tap the blue circles to see an explanation.
| $$ \begin{aligned}-11x^3\cdot(7-4x^4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(77x^3-44x^7) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-77x^3+44x^7 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}44x^7-77x^3\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{11x^3} $ by $ \left( 7-4x^4\right) $ $$ \color{blue}{11x^3} \cdot \left( 7-4x^4\right) = 77x^3-44x^7 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(77x^3-44x^7 \right) = -77x^3+44x^7 $$ |
| ③ | Combine like terms: $$ 44x^7-77x^3 = 44x^7-77x^3 $$ |