Tap the blue circles to see an explanation.
| $$ \begin{aligned}-11-9(2v^7+7v^2)+8v^2+1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-11-(18v^7+63v^2)+8v^2+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-11-18v^7-63v^2+8v^2+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-18v^7-55v^2-10\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{9} $ by $ \left( 2v^7+7v^2\right) $ $$ \color{blue}{9} \cdot \left( 2v^7+7v^2\right) = 18v^7+63v^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 18v^7+63v^2 \right) = -18v^7-63v^2 $$ |
| ③ | Combine like terms: $$ \color{blue}{-11} -18v^7 \color{red}{-63v^2} + \color{red}{8v^2} + \color{blue}{1} = -18v^7 \color{red}{-55v^2} \color{blue}{-10} $$ |