Tap the blue circles to see an explanation.
| $$ \begin{aligned}-10x(x+4)(x-5)& \xlongequal{ }-(10x^2+40x)(x-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(10x^3-50x^2+40x^2-200x) \xlongequal{ } \\[1 em] & \xlongequal{ }-(10x^3-10x^2-200x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-10x^3+10x^2+200x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{10x^2+40x}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{10x^2+40x}\right) \cdot \left( x-5\right) = 10x^3-50x^2+40x^2-200x $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(10x^3-10x^2-200x \right) = -10x^3+10x^2+200x $$ |