Tap the blue circles to see an explanation.
| $$ \begin{aligned}-10(x+4)(x^2-5)& \xlongequal{ }-(10x+40)(x^2-5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(10x^3-50x+40x^2-200) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-10x^3+50x-40x^2+200 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-10x^3-40x^2+50x+200\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{10x+40}\right) $ by each term in $ \left( x^2-5\right) $. $$ \left( \color{blue}{10x+40}\right) \cdot \left( x^2-5\right) = 10x^3-50x+40x^2-200 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(10x^3-50x+40x^2-200 \right) = -10x^3+50x-40x^2+200 $$ |
| ③ | Combine like terms: $$ -10x^3-40x^2+50x+200 = -10x^3-40x^2+50x+200 $$ |