Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{1}{3}(x+6)^2-1& \xlongequal{ }-\frac{1}{3}(x^2+12x+36)-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{x^2+12x+36}{3}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x^2-12x-39}{3}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{1}{3} $ by $ x^2+12x+36 $ to get $ \dfrac{ x^2+12x+36 }{ 3 } $. Step 1: Write $ x^2+12x+36 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{3} \cdot x^2+12x+36 & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{x^2+12x+36}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot \left( x^2+12x+36 \right) }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2+12x+36 }{ 3 } \end{aligned} $$ |
| ② | Subtract $1$ from $ \dfrac{-x^2-12x-36}{3} $ to get $ \dfrac{ \color{purple}{ -x^2-12x-39 } }{ 3 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |